9 Ed Tech Trends to Watch in 2016
Four technology and innovation experts discuss the hottest trends in higher ed tech this year.
What should be on your education technology radar? We asked four higher ed leaders to opine on everything from accessibility and competency-based education (CBE) to wearables and virtual reality. Here's what they told us.
1) Makerspaces
Jonathan Blake Huer: Makerspaces are great for building collaboration and a must for campuses. But, in reality they are an administrative change that results from the convergence and democratization of technology. Rather than photography or video or 3D printing being relegated to specialized fields such as art or film or architecture, these technologies are now widely available. Since makerspaces and other interdisciplinary innovation spaces can be implemented at relatively low cost, the opportunities now exist for everyone to describe and communicate beyond the written word in evolving forms of scholarship.
Bryan Alexander: Makerspaces offer campuses a variety of benefits. They model a peer-based pedagogy, which is one we're grappling with as we head away from sage-on-the-stage. Our formal teaching can learn from this relatively informal practice. Maker pedagogy also models blended learning, as practitioners rely on digital (often mobile) devices for information and for sharing results. Makerspaces serve as test beds for new technologies and practices, such as 3D printing, rapid prototyping and design thinking. We can think of them as perpetual piloting zones. Makerspaces may also offer faculty and staff a less digitally saturated environment for working and exploration, which can appeal for personal reasons.
Off campus, makerspaces support connections to the local community — especially to elders, as students can interact with skilled people to learn from their life experience. Artisans, welders, woodworkers, knitters, tinkerers of all sorts can contribute to the campus environment through a makerspace, improving town-gown relations. Faculty and staff can benefit from these connections as well.
Jack Suess: I agree that makerspaces have become more common. What we see is based on discipline — there is a great deal of variation in makerspace needs. What Mechanical Engineering needs for instruction is different from Art and Information Systems. We have been doing a partnership with our library to offer basic makerspace services to students, such as 3D printing.
What has been interesting on campus is seeing how these efforts are being integrated into research. Over the last three years we have had three successful National Science Foundation proposals for major research infrastructure, and this has allowed us to develop a room-scale 3D scanning facility and an immersive 3D visualization facility, and to advance our high-performance computing environment to do the computation necessary to support the other efforts. What we want to do is move from 3D printing to 3D fabrication. The idea is to construct multipart devices and use technology to go from design to visualization and then fabrication.